Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst.
نویسندگان
چکیده
In the mouse blastocyst, some cells of the inner cell mass (ICM) develop into primitive endoderm (PE) at the surface, while deeper cells form the epiblast. It remained unclear whether the position of cells determines their fate, such that gene expression is adjusted to cell position, or if cells are pre-specified at random positions and then sort. We have tracked and characterised dynamics of all ICM cells from the early to late blastocyst stage. Time-lapse microscopy in H2B-EGFP embryos shows that a large proportion of ICM cells change position between the surface and deeper compartments. Most of this cell movement depends on actin and is associated with cell protrusions. We also find that while most cells are precursors for only one lineage, some give rise to both, indicating that lineage segregation is not complete in the early ICM. Finally, changing the expression levels of the PE marker Gata6 reveals that it is required in surface cells but not sufficient for the re-positioning of deeper cells. We provide evidence that Wnt9A, known to be expressed in the surface ICM, facilitates re-positioning of Gata6-expressing cells. Combining these experimental results with computer modelling suggests that PE formation involves both cell sorting movements and position-dependent induction.
منابع مشابه
Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo
The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage s...
متن کاملP-101: Effects of Ethanol and Strontium on Growth and Development of Two-Cell Arrested Mouse Embryos
Background: Arresting in a certain step of development like two-cell stage could be one of the reasons of infertility. The aim of this study is evaluating the effects of ethanol and strontium on growth and development of two-cell arrested mouse embryos. Materials and Methods: The females were coupled with male following superovulation. Positive vaginal plug mice were killed 48 hours after hCG i...
متن کاملp38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development
During mouse preimplantation embryo development, the classically described second cell-fate decision involves the specification and segregation, in blastocyst inner cell mass (ICM), of primitive endoderm (PrE) from pluripotent epiblast (EPI). The active role of fibroblast growth factor (Fgf) signalling during PrE differentiation, particularly in the context of Erk1/2 pathway activation, is well...
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملP-126: Stem Cell Factor Increases Blastocyst Formation in Mouse Two-Cell Embryo Culture
Background: It is demonstrated that c-Kit( receptor of stem cell factor) mRNA is expressed in late 2-cell stage to the expanded and hatched blastocyst and the stem cell factor (SCF) transcript is detected in the oviduct and uterus. The aim of this study was to investigate the effect of different doses of SCF on mouse 2-cell embryo development in vitro. Materials and Methods: 4-6 weeks old femal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 331 2 شماره
صفحات -
تاریخ انتشار 2009